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NUMBER GAMES

PUZZLE 3

This one was the simplest,
wasn’t it? So I’ll just leave you

with the answers...

The areas of the triangles
are, from least to greatest: 

9/8, 9/4, and 27/8.
Or, to see the pattern more

clearly: 9/8, 18/8, 27/8. That’s
1 1/8, 2 2/8 and 3 3/8.

PUZZLE 1
Hexagon in hexagon: It’s

possible to cut the blue
hexagon up into six equilateral
triangles or six of the other,
wider triangles as shown in
these figures. Since these are
precisely the shapes
surrounding the blue hexagon
in the larger hexagon, there is
twice as much area uncoloured
as there is blue. That means
the blue part takes up 1/3 of
the entire shape.

Part 3 Only 19 is impossible. The reader can check that the
following squares have areas 17 (Figure 1), 18 (Figure 2), and 20
(Figure 3). There are several layers of theory here.

The first, which some may be familiar with, is that every
tilted square turns out to have area equal to the sum of two
square numbers, given by the tilts themselves [see Pythagorean
theorem image in Figure 4]. In the example, the red tilted square
has area 5, which is exactly the sum of the areas of the two
blue, non-tilted squares. 

This isn’t a coincidence, and in fact, if you play around with
pictures like the one in the answer to part 2, you’ll see why it
has to be true in every case.

Since
17 = 42 + 12, 
18 = 32 + 32, and 
20 = 42 + 22, 
we can find a tilted square
for each of those areas.
There is no way to express
19 as a sum of two perfect
squares (as you can
check), so no tilted square
of area 19 exists.

Square in a square: Rotate the middle square and its
corners will touch the sides of the larger square, and its
sides will touch the corners of the smaller square. You can
fold in the corners of the larger square and it will
completely cover the medium, rotated square, so the
middle square is half the area of the large square.
Similarly, the small blue square is half the area of the
middle square. So 1/4 of the entire shape is blue.

I like these puzzles because they
give you another way to think
about area than our typical,

formula-based approach. Area
can be cut into pieces and

reassembled, or shifted and
rotated. There is a long history of
beautiful geometric ideas in this
kind of kinaesthetic approach.

PUZZLE 2
Part 1 Divide the

blue square into 4
triangles. Each
triangle is half the
size of the red
square, so the total
area of the blue
square is 2.

Part 2 Draw a three by
three square around the
tilted square, and cut
away the four white
triangles. Each of the
white triangles is half of
a 2 by 1 rectangle, which
mean each triangle has
area 1 square unit. The
larger square has area 9
square units, so the tilted
square must have area 

9 - 4 = 5 square units.

For me, finding
these kinds of deep,
beautiful patterns
are what draws

me to
mathematics.

Playing with tilted
squares on grids

can lead you to all
kinds of amazing

discoveries.
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The second, deeper layer fewer people are familiar with, but it is
remarkable. It turns out that if you list prime numbers greater
than 2, you can find a tilted square of that prime numbers area
if, and only if, the prime number is one more than a multiple of
four. So we can find tilted squares with areas of 5, 13, 17, 37, and
101 but not of areas of 3, 7, 11, 19, or 103. This pattern – and
many general forms of it – was first proved by the mathematician
Gauss in 1801, and he called it his “golden theorem”.

Figure 2


